Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in exploratory factor analysis:
A comparison of extraction methods under realistic conditions.
Psychological Methods,
24(4), 468β491.
https://doi.org/10.1037/met0000200
Bader, M., & Moshagen, M. (2025). Assessing the fitting propensity of factor models.
Psychological Methods,
30(2), 254β270.
https://doi.org/10.1037/met0000529
Bonifay, W., Cai, L., Falk, C. F., & Preacher, K. J. (2025). Reassessing the fitting propensity of factor models.
Psychological Methods.
https://doi.org/10.1037/met0000735
Braeken, J., & van Assen, M. A. (2017). An empirical
Kaiser criterion.
Psychological Methods,
22, 450β466.
https://doi.org/10.1037/ met0000074
Caron, P.-O. (2025). A
Comparison of the
Next Eigenvalue Sufficiency Test to
Other Stopping Rules for the
Number of
Factors in
Factor Analysis.
Educational and Psychological Measurement, 00131644241308528.
https://doi.org/10.1177/00131644241308528
Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An
Empirical Evaluation of the
Use of
Fixed Cutoff Points in
RMSEA Test Statistic in
Structural Equation Models.
Sociological Methods & Research,
36(4), 462β494.
https://doi.org/10.1177/0049124108314720
Fabrigar, L. R., & Wegener, D. T. (2012). Exploratory Factor Analysis. Oxford University Press.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the Use of Exploratory Factor Analysis in Psychological Research. Psychological Methods, 4(3), 272β299.
Goretzko, D. (2025). How many factors to retain in exploratory factor analysis?
A critical overview of factor retention methods.
Psychological Methods.
https://doi.org/10.1037/met0000733
Goretzko, D., Pham, T. T. H., & BΓΌhner, M. (2021). Exploratory factor analysis:
Current use, methodological developments and recommendations for good practice.
Current Psychology,
40(7), 3510β3521.
https://doi.org/10.1007/s12144-019-00300-2
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives.
Structural Equation Modeling: A Multidisciplinary Journal,
6(1), 1β55.
https://doi.org/10.1080/10705519909540118
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The
Performance of
RMSEA in
Models With Small Degrees of
Freedom.
Sociological Methods & Research,
44(3), 486β507.
https://doi.org/10.1177/0049124114543236
Lai, K., & Green, S. B. (2016). The
Problem with
Having Two Watches:
Assessment of
Fit When RMSEA and
CFI Disagree.
Multivariate Behavioral Research,
51(2-3), 220β239.
https://doi.org/10.1080/00273171.2015.1134306
Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340β364.
Moshagen, M., & Auerswald, M. (2018). On congruence and incongruence of measures of fit in structural equation modeling.
Psychological Methods,
23(2), 318β336.
https://doi.org/10.1037/met0000122
Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure.
Psychological Assessment,
24, 282β292.
https://doi.org/10.1037/a0025697
Savalei, V. (2021). Improving
Fit Indices in
Structural Equation Modeling with
Categorical Data.
Multivariate Behavioral Research,
56(3), 390β407.
https://doi.org/10.1080/00273171.2020.1717922
Shi, D., & Maydeu-Olivares, A. (2020). The
Effect of
Estimation Methods on
SEM Fit Indices.
Educational and Psychological Measurement,
80(3), 421β445.
https://doi.org/10.1177/0013164419885164
Steiner, M. D., & Frey, R. (2021). Representative design in psychological assessment:
A case study using the
Balloon Analogue Risk Task (
BART).
Journal of Experimental Psychology: General,
150(10), 2117β2136.
https://doi.org/10.1037/xge0001036
Watkins, M. W. (2018). Exploratory
Factor Analysis:
A Guide to
Best Practice.
Journal of Black Psychology,
44(3), 219β246.
https://doi.org/10.1177/0095798418771807
Xia, Y., & Yang, Y. (2019).
RMSEA,
CFI, and
TLI in structural equation modeling with ordered categorical data:
The story they tell depends on the estimation methods.
Behavior Research Methods,
51(1), 409β428.
https://doi.org/10.3758/s13428-018-1055-2
Zhang, D. C., Highhouse, S., & Nye, C. D. (2019). Development and validation of the
General Risk Propensity Scale (
GRiPS).
Journal of Behavioral Decision Making,
32(2), 152β167.
https://doi.org/10.1002/bdm.2102